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DATA STRUCTURE AND ALGORITHMS FOR RECURSIVELY
LOW-RANK COMPRESSED MATRICES

JIE CHEN∗

Abstract. We present a data structure and several operations it supports for recursively low-
rank compressed matrices; that is, the diagonal blocks of the matrix are recursively partitioned, and
the off-diagonal blocks in each partition level admit a low-rank approximation. Such a compression
is embraced in many linear- or near-linear-time methods for kernel matrices, including the fast
multipole method, the framework of hierarchical matrices, and several other variants. For this
compressed representation, we develop a principled data structure that enables the design of matrix
algorithms by using tree traversals and that facilitates computer implementation, especially in the
parallel setting. We present three basic operations supported by the data structure—matrix-vector
multiplication, matrix inversion, and determinant calculation—all of which have a strictly linear
cost. These operations consequently enable the solution of other matrix problems with practical
significance, such as the solution of a linear system and the computation of the diagonal of a matrix
inverse. We show comprehensive experiments with various matrices and kernels to demonstrate the
favorable numerical behavior and computational scaling of the algorithms.
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1. Introduction. Kernel matrices arise from an extensive array of applications
in science and engineering, ranging from the solving of differential/integral equations,
N-body simulations, and electronic structures, to statistical covariance modeling, scat-
tered data interpolation, and kernel machine learning. Informally, an n × n kernel
matrix Φ is defined based on a set of n points {xi} and a two-argument kernel func-
tion φ(·, ·), where the (i, j) element of Φ is φ(xi,xj). It was found that the kernel
φ in many practical situations is numerically degenerate, in the sense that φ can be
(approximately) expressed as

φ(x,y) =

r∑
i=1

ψi(x)ϕi(y)

by using two bases {ψi} and {ϕi} with a finite number r of summation terms, when x
and y are reasonably distant. It suffices for the approximation, if not exact equality, to
be accurate up to machine precision from a numerical perspective although in practice,
lower precision is also acceptable. Hence, when the set of points {xi} is ordered in
a manner such that the points listed in the front are geometrically separate from
those listed at the end, then the off-diagonal blocks of the corresponding matrix are
numerically low rank, with the rank governed by r. One can further reorder the points
corresponding to each diagonal block of the matrix, and this reordering is recursive.
The result is a permuted kernel matrix that forms a hierarchical structure, where in
each level the off-diagonal blocks are low rank.

Motivated by this observation, we consider a fundamental data structure for stor-
ing such a matrix and design supportive algorithms for performing basic matrix op-
erations. Specifically, we abstract the hierarchical structure and encode the contents

∗Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439.
Email: jiechen@mcs.anl.gov

1



2 J. CHEN

(e.g., the low-rank decomposition) in a tree data structure. The supported matrix
operations are then all in the form of tree traversals, a different (but closely related)
perspective from that of traditional dense matrix computations. In what follows, we
use the notation A, an n × n complex matrix, to denote the matrix. In most of
the cases, one instantiates A as an (approximated) kernel matrix, although it is also
possible that A does not relate to any kernel but only conforms to the structure.

Most important, the data structure requires a storage that is linear in n, and the
matrix operations it supports also have a strictly linear time cost. The matrix opera-
tions we present in this paper include matrix-vector multiplication, matrix inversion,
and determinant calculation. (More supported operations will be described in sub-
sequent papers.) These basic operations support straightforward extensions to other
matrix calculations that have a highly practical significance, such as solving a linear
system of equations and computing the diagonal of the inverse of a matrix [5, 4, 21].
Hence, this data structure overcomes the fundamental scalability barrier of general
dense matrix computations (that typically require an O(n2) memory and O(n2) to
O(n3) time cost) and proves useful in many applications when the matrix becomes
large.

After presenting the technical details in Sections 2 to 6, we discuss in Section 7 the
fine distinctions and connections between this work and existing work, including the
fast multipole method (FMM) [13, 28, 11], tree code methods [3, 18], interpolative de-
composition [10, 24, 17], hierarchical matrices (H matrix) and H2 matrices [14, 15, 7],
and hierarchically semiseparable matrices (HSS matrices) [9, 8, 26]. Readers familiar
with the literature may find it more entertaining to read Section 7 immediately after
Section 2, before proceeding with the technicalities in Sections 3 to 6. This work is
by no means a completely novel invention in view of the prosperous literature on fast
methods for kernel matrices, all of which aim at a linear or near-linear computational
cost. However, a distinguishing feature of this work is a new matrix inversion algo-
rithm (and an extension to the computation of determinant) tied to the proposed tree
data structure, which differs from other tree structures considered in the literature in
one way or another. The computed inverse can be used to solve a linear system with
an accuracy matching that of a traditional dense direct solver. Furthermore, including
inversion, all proposed algorithms are designed to maximally follow the computational
flow of the FMM method, for which reason they have a good potential to scale to and
beyond O(105) processor cores on high-performance computers, as has already been
demonstrated for the FMM case [19].

Numerical experiments gauging the numerical errors for medium-sized matrices
are presented in Section 8. Empirically quantifying the errors for large-scale matrices
is highly difficult: the “ground truths” must be computed in a complexity higher than
linear, for which experiments are not affordable. We did, however, conduct compre-
hensive tests for cases as general as possible, including real versus complex matrices,
well-conditioned versus ill-conditioned matrices, Hermitian versus non-Hermitian ma-
trices, positive-definite versus indefinite matrices, and translational-invariant kernels
versus general kernels. The purpose is to showcase the wide applicability of the pro-
posed data structure as a framework for designing matrix algorithms, whose numerical
stability should not be traded for a fast execution. Nevertheless, we demonstrate tim-
ing results to confirm the linear scaling of all the algorithms. Concluding remarks
pointing to future development are given in Section 9.

2. Recursively low-rank compressed matrix. The matrix of interest entails
a multilevel structure: it is block partitioned, and the main-diagonal blocks are re-
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cursively subpartitioned. In addition, all the off-diagonal blocks have a rank that is
bounded by a (relatively small) constant. Intricacy exists, however, in the relationship
between the off-diagonal blocks across different levels.

Consider an arbitrary rooted tree (as in graph theory), an example of which is
shown in Figure 2.1(a). The tree is not necessarily a full tree (all nonleaf nodes have
the same number of children) or a complete tree (every level is completely filled);
however, every nonleaf node must have more than one child.

1
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5 6 7

3 4

8 9

(a) Partitioning tree T

A55 A56 A57

A65 A66 A67

A75 A76 A77

A88 A89

A98 A99

A23 A24

A32 A33 A34

A42 A43

(b) Recursively low-rank compressed matrix A

Fig. 2.1. A tree and the matrix it represents.

This tree corresponds to a multilevel structure of a square matrix A: the root
represents all the row (column) indices of the matrix; and the children of every nonleaf
node i collectively represent a partitioning of the set of indices i contains. Hence, we
denote by Aij a matrix block whose row indices and column indices are represented
by nodes i and j, respectively. Note that i and j are not arbitrary; they are either
equal or siblings (that is, they share the same parent). When i 6= j, the block Aij is
located off diagonal and is not subpartitioned. On the other hand, when i = j and
i is not a leaf node, Aii is subpartitioned. The partitioning need not be balanced.
Figure 2.1(b) shows a recursively block-partitioned matrix corresponding to the tree
on the left.

For every off-diagonal block Aij , assume that it admits a factorization1

Aij = UiΣijV
∗
j , (2.1)

where Ui and Vj have r columns and Σij has a size r × r. The factorization only
implies that Aij has a rank no greater than r; the actual rank can be strictly smaller.
The value r is the same for all off-diagonal blocks on all levels. Conceptually, r is
small as in “low” rank; however, we impose no constraints on the magnitude of r. In
Figure 2.1(b), all the unshaded blocks are off-diagonal blocks, and they admit such a
factorization.

The aforementioned intricacy lies in a same-subspace requirement for the Ui and
Vj factors across levels. Specifically, for any pair of parent i and child k, there exist

1In this paper, a star appearing in the superscript means the transpose of a real matrix or
conjugate transpose of a complex matrix, whereas a star appearing in the subscript means general
and unspecified indices.
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r × r matrices Wki and Zki such that

Ui(Ik, :) = UkWki and Vi(Ik, :) = VkZki, (2.2)

where Ik denotes the set of indices a node k contains. Then, if k is a descendant of i
through the path (i, k1, k2, . . . , kt, k), we have

Ui(Ik, :) = UkWkkt · · ·Wk2k1Wk1i, (2.3)

and similarly for Vi(Ik, :). This means that for a leaf node k, the Ui(Ik, :)’s for all
i along the path from k to the root span the same subspace, if the change-of-basis
matrices Wkskt are nonsingular for all consecutive pairs kskt along the path; and
similarly for the Vi(Ik, :)’s.

We are now ready to present the precise definition of the matrix we consider in
this paper.

Definition 2.1. A rooted tree T is called a partitioning tree of a set I of indices
if

1. no nodes have exactly one child;
2. the root contains I;
3. the children of a nonleaf node i constitutes a partitioning of the set of indices

i contains.
Definition 2.2. For every partitioning tree T of a set of indices {1, . . . , n} and

for a constant r, there defines the structure of a recursively low-rank compressed
matrix A ∈ Cn×n such that

1. for every node i, Aii is defined as A(Ii, Ii), where Ii denotes the collection of
indices i contains;

2. for every pair of siblings i and j in the tree, Aij is defined as A(Ii, Ij);
3. every such matrix block Aij admits a factorization (2.1) where Σij ∈ Cr×r;
4. for every Ui (resp. Vj) in (2.1), if i (resp. j) has a child k, there exists

Wki ∈ Cr×r (resp. Zkj) such that (2.2) is satisfied.
Note that a node of the partitioning tree T contains a not necessarily consecutive

sequence of indices. For illustration purpose, however, the blocks of the matrix A in
Figure 2.1(b) are all drawn to contain consecutive rows and columns. The matrix
reordering is always implicit.

2.1. Data structure. The matrix A in Definition 2.2 is naturally stored with
the tree T . The essential elements are

1. Aii for all leaf nodes i,
2. Ui and Vi for all leaf nodes i,
3. Σij for all pairs of siblings i and j, and
4. Wki and Zki for all pairs of parent i and child k.

Clearly, if i is not a leaf node, Ui and Vi are not stored. The reason is that Ui can be
built based on (2.3) by using Uk for all k that are leaf descendants of i.

In computer implementation, a tree is usually represented as a linked list or an
array, where each element represents a tree node. The parent-to-child links in the
tree are implicit in these data structures. For example, when the number of children
of a node is dynamic, the parent node usually has only one pointer pointing to one
of the children, whereas the children are connected by using a linked list. Hence, the
essential elements of the matrix are preferably stored with the tree nodes rather than
with the tree edges. Naturally, we store Aii, Ui and Vi in a leaf node i. For Σij , we
store it in the parent node l of i and j. Hence, if a nonleaf node l has s children,
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the number of Σij ’s stored in l is s(s − 1). We store each Wki in the child node k.
Figure 2.2 illustrates the storage for the example matrix in Figure 2.1.

A55, U5, V5

W52, Z52

A66, U6, V6

W62, Z62

A77, U7, V7

W72, Z72

A88, U8, V8

W84, Z84

A99, U9, V9

W94, Z94

A33, U3, V3

W31, Z31

Σ56, Σ57, Σ65

Σ67, Σ75, Σ76

W21, Z21

Σ89, Σ98

W41, Z41

Σ23, Σ24, Σ32

Σ34, Σ42, Σ43

1

2 3 4

5 6 7 8 9

Fig. 2.2. Data stored in the tree of Figure 2.1.

With this scheme, the required storage is∑
i leaf

n2
i︸ ︷︷ ︸

for Aii

+ 2nr︸ ︷︷ ︸
for Ui,Vi

+
∑
l

sl(sl − 1)r2

︸ ︷︷ ︸
for Σij

+ 2(m− 1)r2

︸ ︷︷ ︸
for Wki,Zki

,

where ni is the number of indices a node i contains (that is, ni = |Ii|), sl is the
number of children a node l has, and m is the total number of nodes in the tree. In all
subsequent cost analyses, we assume that the tree is a full and complete s-ary tree and
that the indices are always partitioned in balance such that each leaf node contains
n0 indices. This assumption simplifies the analysis and we see that the storage cost
can be simplified to

O(n · (r + n0 + s2r2/n0)),

which is linear in n, assuming that r, n0, and s are constants.
Another useful angle for analyzing the storage requirement (and the time require-

ment of the algorithms presented later) is to cast the cost as a function of the tree
size, that is, the number of tree nodes. In the balanced case, the number of tree nodes
is O(n · s/n0). Then, any cost proportional to the tree size is linear in n.

2.2. Augmenting the data structure. We sometimes need to store additional
information in the tree, thus augmenting the data structure. In every matrix algorithm
we discuss later, augmentation is necessary. In such cases, it is crucial to verify the
additional cost. A cost linear in n is desirable. For example, if the storage added
to each tree node is constant, then the total additional storage is also O(n). We
assert here that for all the operations studied in this paper, augmenting the tree data
structure maintains the linear storage cost.
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3. Matrix-vector multiplication. We now start to present the matrix oper-
ations that the data structure supports. The first one is computing matrix-vector
products.

The multiplication of Ab conceptually consists of two parts: multiplying Aiibi for
all leaf nodes i and multiplying Aijbj for all pairs of sibling nodes i and j. The first
part is straightforward. We can interpret the second part

Aijbj = UiΣijV
∗
j bj (3.1)

as a wedge visit of the tree

l

i j

that is, visiting the nodes in the order j → l → i, by reading the subscripts of (3.1)
from right to left. In reality, Ui may not be explicitly stored if i is not a leaf node,
and similarly for Vj . Hence, the wedge visit must be extended to the leaf descendants
of i and j. Specifically, for every leaf descendant k of i, we write the Ik block of the
vector UiΣijV

∗
j bj as

Ui(Ik, :)ΣijV
∗
j bj = Ui(Ik, :)Σij

(∑
p

Vj(Ip, :)
∗bp

)
,

where p ranges from all leaf descendants of j. Denote by Ch(·) the set of children of
a node, and let the path connecting i and k be (i, k1, k2, . . . , kt, k). Then, using the
change-of-basis matrices, we further expand the above quantity as

(UkWkkt · · ·Wk2k1Wk1i) Σij

 ∑
p1∈Ch(j)

Z∗p1j
∑

p2∈Ch(p1)

Z∗p2p1 · · ·
∑

p∈Ch(ps)

Z∗ppsV
∗
p bp

 .

(3.2)
Here, for simplicity, we assume that all the leaf descendants p are on the same tree
level. The situation that the p’s lie on different levels necessarily makes the expression
too complicated but shows no additional insights. The use of this expression is that
it is suggestive on the calculation steps, if one reads it from right to left: For all
leaf descendants p of j, we multiply V ∗p bp, followed by a change of basis to obtain
Z∗ppsV

∗
p bp. We sum this result over all the p’s that share the same parent ps and move

the calculation one level above. We continuously move up until reaching the node j,
where the expression inside the larger pair of parentheses in (3.2) has been computed.
Then we perform the wedge visit, premultiply Σij , cross over the parent of j, and
reach node i. From node i, we descend to node k level by level, in each of which we
premultiply a change-of-basis matrix W∗∗. When we land on k, we premultiply Uk
and complete the calculation of (3.2).

3.1. Formal algorithm. Based on the preceding discussion, we now describe
the full algorithm for computing y = Ab, where y is partitioned in the same manner
as b.

First, we augment the tree data structure by adding the storage of two length-
r vectors, ci and di, in each node i. The additional storage maintains the linear
complexity of the data structure.
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Next, the algorithm consists of two passes, an upward pass and a downward pass.
Conceptually, connecting the two passes are wedge visits, which in reality we put in
the upward pass. In this pass, we start with each leaf i by setting ci = V ∗i bi; we also
initialize yi = Aiibi. Each time when we move up one level of the tree, say, when
the child level is j and the parent level is i, we perform a change of basis on cj and
accumulate the results to ci; that is, ci =

∑
j∈Ch(i) Z

∗
jicj . Meanwhile, we perform

a wedge visit and compute dk = Σkici for all siblings k of i. This wedge visit is
performed on all levels, every time a ci is computed. We continuously move up across
levels until reaching the root.

In the downward pass, for every node i in the same level, we premultiply the
change-of-basis matrix Wji to di and accumulate it to dj for all children j of i. We
descend level by level, until finally reaching the leaves. On a leaf node i, we premultiply
Ui to di and accumulate the result to yi. This concludes the calculation of the overall
vector y.

The upward pass and the downward pass are, in fact, a postorder and a preorder
tree traversal, respectively. Algorithm 1 presents the traversals by using recursions
for ease of understanding. One can rewrite them in an iterative fashion, if the depth
of the recursion poses a problem for the limited stack size of a computer program.

Algorithm 1 Computing y = Ab

1: Initialize ci ← 0, di ← 0 for each node i of the tree
2: Upward(root)
3: Downward(root)

4: subroutine Upward(i)
5: if i is leaf then
6: ci ← V ∗i bi; yi ← Aiibi
7: else
8: for all children j of i do
9: Upward(j)

10: ci ← ci + Z∗jicj , if i is not root
11: end for
12: end if
13: if i is not root then
14: for all siblings k of i do dk ← dk + Σkici end for
15: end if
16: end subroutine

17: subroutine Downward(i)
18: if i is leaf then yi ← yi + Uidi and return end if
19: for all children j of i do
20: dj ← dj +Wjidi, if i is not root
21: Downward(j)
22: end for
23: end subroutine
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3.2. Time cost. Because the algorithm consists of two tree traversals, where the
time cost of the computation when visiting each node can be bounded by a constant

O( n2
0︸︷︷︸

for yi

+ n0r︸ ︷︷ ︸
for ci,yi

+ r2︸︷︷︸
for ci,dk,dj

),

we conclude that the overall time cost is linear in the tree size, that is, linear in n.

4. Matrix inversion. In this section, we consider computing Ã = A−1. Through
construction, we will see that Ã is also a recursively low-rank compressed matrix, hav-
ing exactly the same structure as A, with the “rank” r unchanged. Hence, we add
a tilde to all the elements of A (i.e., A∗∗, U∗, V∗, Σ∗∗, W∗∗, and Z∗∗) to denote the
elements of Ã. Then, the core of the matrix inversion is to construct Ã∗∗, Ũ∗, Ṽ∗, Σ̃∗∗,
W̃∗∗, and Z̃∗∗. A direct consequence is that solving the linear system A−1b amounts
to computing the matrix-vector product Ãb, which can be carried out by using Algo-
rithm 1. We note that using Ã as a preconditioner in an iterative solver can improve
the accuracy of the linear system solution; more details are given in Section 8.

To facilitate the derivation of the algorithm, we first show in Figure 4.1 a schematic
arrangement for the tree node indices. This arrangement is used almost throughout
the section. We let i be some node of current interest. Two of its children are denoted
as j and j′; but it may have more children. The node j further has two children k
and l; and again, j may have more than two children. The nodes j′, k, and l might
be leaves or might span subtrees.

i

j

k l

j′

Fig. 4.1. Schematic tree node arrangements for the discussions in Section 4. A subtree rooted
at i is displayed. Each nonleaf node may have more than two children, but only two are drawn.

4.1. Ã is recursively low-rank compressed. To understand that Ã and A
have the same structure, we first present the following result.

Proposition 4.1. Let j and j′ denote two children of a node i and let all Ajj’s
be invertible. Define block matrix Λ and block-diagonal matrix Ξ where

(j, j′) block of Λ = Σjj′ if j 6= j′; otherwise = 0,

(j, j) block of Ξ = V ∗j A
−1
jj Uj ,
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and a matrix H = I + ΛΞ. If H is invertible, then Aii is invertible with

(j, j′) block of A−1
ii =

{
A−1
jj −A

−1
jj UjDjjV

∗
j A
−1
jj j = j′

−A−1
jj UjDjj′V

∗
j′A
−1
j′j′ j 6= j′,

(4.1)

where D = H−1Λ is a block matrix having the same block structure as H and Λ.
Proof. We write

Aii =

Ajj . . .

Aj′j′

+

Uj . . .

Uj′

Λ

V
∗
j

. . .

V ∗j′

 ,
where Λ is the block matrix defined in the proposition. Then, applying the Sherman-
Morrison-Woodbury formula we obtain

A−1
ii =

A
−1
jj

. . .

A−1
j′j′

−
A
−1
jj Uj

. . .

A−1
j′j′Uj′

D
V
∗
j A
−1
jj

. . .

V ∗j′A
−1
j′j′

 ,
where D is the block matrix defined in the proposition.

Proposition 4.1 is used for an induction proof of the claim that Ã is a recursively
low-rank compressed matrix. The essential idea is that if A−1

jj has been constructed

for all children j of i, then we can construct A−1
ii to preserve the compressed structure.

In particular, the (j, j′) blocks of A−1
ii can be naturally defined when j 6= j′, and the

(j, j) blocks of A−1
ii are updated from A−1

jj .
Noting that Proposition 4.1 can be applied one level lower, that is,

(k, l) block of A−1
jj =

{
A−1
kk −A

−1
kk UkDkkV

∗
k A
−1
kk k = l

−A−1
kk UkDklV

∗
l A
−1
ll k 6= l,

we multiply A−1
jj with Uj and obtain

k block of A−1
jj Uj = A−1

kk Uk

Wkj +
∑

l∈Ch(j)

(−Dkl)(V
∗
l A
−1
ll Ul)Wlj

 .
Similarly, we can obtain the formula for the k block of (A−1

jj )∗Vj . Thus, if we assume
that for all children j of a node i, Ajj is a recursively low-rank compressed matrix
with

Ũk = A−1
kk Uk, Ṽk = A−1

kk Vk, ∀ k ∈ Ch(j)

Σ̃kl = −Dkl, ∀ k, l ∈ Ch(j), k 6= l,

and if we define Θ̃l = V ∗l A
−1
ll Ul for all l ∈ Ch(j), then for one level higher we have

Ũj = A−1
jj Uj , W̃kj = Wkj +

∑
l∈Ch(j)

Σ̃klΘ̃lWlj , ∀ k ∈ Ch(j), j ∈ Ch(i)

Ṽj = (A−1
jj )∗Vj , Z̃kj = Zkj +

∑
l∈Ch(j)

Σ̃∗lkΘ̃∗l Zlj , ∀ k ∈ Ch(j), j ∈ Ch(i)

Σ̃jj′ = −Djj′ , ∀ j, j′ ∈ Ch(i), j 6= j′.



10 J. CHEN

Furthermore, Θ̃j can be computed from Θ̃k for all k ∈ Ch(j):

Θ̃j = V ∗j A
−1
jj Uj =

∑
k∈Ch(j)

Z∗kjV
∗
k A
−1
kk UkW̃kj =

∑
k∈Ch(j)

Z∗kjΘ̃kW̃kj .

So far, we have seen how Ũj , Ṽj , W̃kj , Z̃kj , and Σ̃jj′ are defined by induction.

The Ũ∗, Ṽ∗, W̃∗∗, and Z̃∗∗’s in lower levels need not change. It remains to modify the
Σ̃∗∗’s in lower levels to ensure that the recursively low-rank compressed structure of
A−1
ii is correct. For this, we return to (4.1), in particular, the first case j = j′. This

case indicates that for any pair of sibling nodes k and l that are descendants (not
necessarily children) of j, the computed Σ̃kl for A−1

jj need only add a correction term

in order that Σ̃kl becomes correct for A−1
ii . Specifically, we write

(k, l) block of A−1
ii = [(k, l) block of A−1

jj ] + Ũj(Ik, :)(−Djj)Ṽj(Il, :)
∗.

Let (j, j1, . . . , js) be the path connecting j and the parent js of k and l. If we define
Σ̃jj = −Djj , then the above equality is expanded as

(k, l) block of A−1
ii = [(k, l) block of A−1

jj ] + ŨkW̃kjs · · · W̃j1jΣ̃jjZ̃
∗
j1j · · · Z̃

∗
ljs Ṽ

∗
l .

Hence, the correction update of Σ̃kl is simply

Σ̃kl ← Σ̃kl + W̃kjs · · · W̃j1jΣ̃jjZ̃
∗
j1j · · · Z̃

∗
ljs . (4.2)

This formula updates Σ̃kl for all siblings k and l that are descendants of j, including
the case k = l.

Clearly, in the base case, for each leaf node k, we initially have Ãkk = A−1
kk . Then,

we in effect have completed the induction of the proof that Ã is a recursively low-rank
compressed matrix. The proof, a constructive one, in addition defines all the elements
Ã∗∗, Ũ∗, Ṽ∗, Σ̃∗∗, W̃∗∗ of Ã and gives the explicit computation formulas for them.

4.2. Improved computation: part 1. We could have used the formulas in
the preceding subsection to straightforwardly compute Ã in a recursive manner. One
pitfall of doing so, however, is that the calculation may cause severe numerical insta-
bility. To see this, consider the base case where Ãkk is obtained initially as the inverse
of Akk. When Akk is ill-conditioned, the numerical error of Ãkk is nonnegligible and
will accumulate and amplify across levels.

To encourage a better numerical behavior, we utilize the previously vacant place-
holders Σii. Recall that in the definition of a recursively low-rank compressed matrix,
Σij is defined only for a pair of sibling nodes i and j. We now in addition define Σii
for all nodes i. The content of Σii is arbitrary, as long as it fulfills a preconditioning
goal. Let

Aii = Bii + UiΣiiV
∗
i . (4.3)

Conceptually speaking, Σii is some r × r matrix such that Bii is better conditioned
than Aii. In practice, when one constructs the whole matrix A (as we do in Section 6),
one should consider additionally defining the Σii’s if A will be inverted later. For now,
the specific content of Σii is irrelevant, and we assume only that it exists with (4.3).

The following result is parallel with Proposition 4.1. In the proposition, the
notations Λ, Ξ, H, and D are redefined. All subsequent discussions refer to the new
notations.
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Proposition 4.2. Let j and j′ denote two children of a node i, and let all Bjj’s
be invertible. Define block matrix Λ and block-diagonal matrix Ξ where

(j, j′) block of Λ = Σjj′ −WjiΣiiZ
∗
j′i,

(j, j) block of Ξ = V ∗j B
−1
jj Uj ,

and a matrix H = I + ΛΞ. If H is invertible, then Bii is invertible with

(j, j′) block of B−1
ii =

{
B−1
jj −B

−1
jj UjDjjV

∗
j B
−1
jj j = j′

−B−1
jj UjDjj′V

∗
j′B
−1
j′j′ j 6= j′,

(4.4)

where D = H−1Λ is a block matrix having the same block structure as H and Λ.
Proof. We write Aii in the following two forms, which naturally equate:

Bii + UiΣiiV
∗
i and

Bjj . . .

Bj′j′

+

Uj . . .

Uj′

Λ

V
∗
j

. . .

V ∗j′

 ,
where Λ is a block matrix with the (j, j′) block being Σjj′ . Then, clearly,

Bii =

Bjj . . .

Bj′j′

+

Uj . . .

Uj′

Λ

V
∗
j

. . .

V ∗j′

 , (4.5)

where the block matrix Λ is defined in the proposition. Thus, we conclude the propo-
sition by applying the Sherman-Morrison-Woodbury formula on Bii.

The use of Proposition 4.2 is that we can apply almost the same rationale as in
the preceding subsection to derive the recursive formulas for constructing B−1

ii level
by level, such that eventually when i is the root, A−1 = A−1

ii is easily obtained from
B−1
ii . We say “almost the same rationale” but not “exactly the same” because we

need one more tool to handle the concluding case. See the following proposition,
whose verification is straightforward. The use of the proposition is to apply to the
root node.

Proposition 4.3. For any node i,

A−1
ii = B−1

ii −B
−1
ii Ui[(I + ΣiiV

∗
i B
−1
ii Ui)

−1Σii]V
∗
i B
−1
ii ,

if all the involved inverses are well defined.
We are now ready to sketch the recursive computational process. Borrowing the

derivations in the preceding subsection, we define for all nodes k

Ũk = B−1
kk Uk, Ṽk = (B−1

kk )∗Vk, Θ̃k = V ∗k B
−1
kk Uk. (4.6)

Then, when j is the parent of k, we have

Ũj(Ik, :) = ŨkW̃kj , where W̃kj = Wkj +
∑

l∈Ch(j)

Σ̃klΘ̃lWlj , (4.7)

Ṽj(Ik, :) = ṼkZ̃kj , where Z̃kj = Zkj +
∑

l∈Ch(j)

Σ̃∗lkΘ̃∗l Zlj , (4.8)

Σ̃jj′ = −Djj′ , where block matrix D is defined in Proposition 4.2. (4.9)
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Furthermore, Θ̃j can be computed from the Θ̃k’s as

Θ̃j =
∑

k∈Ch(j)

Z∗kjΘ̃kW̃kj . (4.10)

In the base case, for all leaf nodes k we intialize Ãkk ← B−1
kk and compute Ũk,

Ṽk, and Θ̃k according to (4.6). We then recursively compute W̃∗∗, Z̃∗∗, and Σ̃∗∗
based on (4.7)–(4.9), with the help of (4.10). We move up the tree level by level until
reaching the root node i. At the root, we must in addition compute

Σ̃ii = −(I + ΣiiΘ̃i)
−1Σii,

according to Proposition 4.3. At this point, the computation ofA−1 is almost complete
except for the corrections of the Σ̃∗∗’s.

4.3. Improved computation: part 2. Recall (4.2) in Section 4.1. When
i is the current node of interest and j is a child of i, one performs a correction
Σ̃kl ← Σ̃kl + Ẽkl for all descendant pairs k, l of j, where the correction term is

Ẽkl = W̃kjs · · · W̃j1jΣ̃jjZ̃
∗
j1j · · · Z̃

∗
ljs .

For a fixed pair k, l, this correction must be applied every time we construct B−1
ii , for

all nodes i that are at least two levels above k, l. The repeating corrections for different
i’s moving toward the root is time consuming; hence, we consider consolidating the
corrections. To this end, we let initially

Ẽkl ← W̃kjΣ̃jjZ̃
∗
lj

where k, l refer to a pair of children of j, when i is the current node of interest.
After the upward calculation reaches the tree root, we perform a downward cascade
correction. Suppose Ẽjj has accumulated all the corrections to Σ̃jj . Then clearly
with the update

Ẽkl ← Ẽkl + W̃kjẼjjZ̃
∗
lj ,

Ẽkl will accumulate all the corrections to Σ̃kl. Hence, we move down the tree and
update Ẽ∗∗ in this recursive manner. Each Ẽ∗∗ is updated only once, and hence the
corresponding Σ̃∗∗ suffices to be corrected only once. When we finish visiting all the
tree nodes, all the corrections have been completed. At a leaf node k, we in addition
update Ãkk ← Ãkk + ŨkΣ̃kkṼ

∗
k and conclude the overall calculation.

4.4. Formal algorithm. We summarize the discussions in the preceding sub-
sections and present the formal algorithm here.

We first augment the tree data structure. When we use Ã to represent the inverted
matrix, the augmented storage is posted on Ã. These additional contents are

1. Θ̃i ∈ Cr×r, for all nodes i, and
2. Ẽjj′ ∈ Cr×r, for all sibling pairs j, j′, including j = j′.

Furthermore, we require the additional storage of Σii in A and Σ̃ii in Ã for all nodes
i. Different from Σij (resp. Σ̃ij), which is stored in the parent node, Σii (resp. Σ̃ii)

is stored in node i itself. Then, for consistency, Ẽjj′ is stored in the parent node of j

and j′ if j 6= j′, but it is stored in the node j itself if j = j′. Naturally, Θ̃i is stored
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with node i. Clearly, the extra storage maintains the linear complexity of the data
structure.

Algorithm 2 presents the detailed steps. Similar to Algorithm 1, Algorithm 2 also
comprises an upward and a downward pass, which are equivalent to a postorder and
a preorder tree traversal, respectively. Hence, one is free to choose a recursive or an
iterative implementation style.

Although the algorithm is derived based on Section 4.2, not surprisingly one sees
that the discussions in Section 4.1 correspond to the special case where all Σii’s are
zero (that is, Aii = Bii). The Σii’s are nonessential in representing the original matrix
A; hence in theory they can be arbitrary. The role of Σii’s is to encourage numerical
stability by transforming the inversions on the Aii’s to those on the better-conditioned
Bii’s. The Bii’s do not explicitly appear in the algorithm.

Algorithm 2 Computing Ã = A−1

1: Upward(root)

2: Downward(root)

3: subroutine Upward(i)

4: if i is leaf then

5: Ãii ← (Aii − UiΣiiV ∗i )−1; Ũi ← ÃiiUi; Ṽi ← Ã∗iiVi; Θ̃i ← V ∗i Ũi
6: return

7: end if

8: for all children j of i do

9: Upward(j)

10: W̃kj ←Wkj +
∑
l∈Ch(j) Σ̃klΘ̃lWlj for all children k of j

11: Z̃kj ← Zkj +
∑
l∈Ch(j) Σ̃∗lkΘ̃∗l Zlj for all children k of j

12: Θ̃j ←
∑
k∈Ch(j) Z

∗
kjΘ̃kW̃kj if j is not leaf

13: end for

14: Compute D that is defined in Proposition 4.2

15: for all children j, j′ of i (including j = j′) do Σ̃jj′ ← −Djj′ end for

16: for all children j of i do

17: Ẽkl ← W̃kjΣ̃jjZ̃
∗
lj for all children k, l of j (including k = l)

18: end for

19: if i is root then

20: W̃ji ←Wji +
∑
j′∈Ch(i) Σ̃jj′Θ̃j′Wj′i for all children j of i

21: Z̃ji ← Zji +
∑
j′∈Ch(i) Σ̃∗j′jΘ̃

∗
j′Zj′i for all children j of i

22: Θ̃i ←
∑
j∈Ch(i) Z

∗
jiΘ̃jW̃ji

23: Σ̃ii ← −(I + ΣiiΘ̃i)
−1Σii

24: Ẽjj′ ← W̃jiΣ̃iiZ̃
∗
j′i for all children j, j′ of i (including j = j′)

25: Ẽii ← 0

26: end if

27: end subroutine

Continued in Algorithm 3...
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Algorithm 3 Computing Ã = A−1, continued from Algorithm 2

28: subroutine Downward(i)

29: if i is leaf then

30: Ãii ← Ãii + ŨiΣ̃iiṼ
∗
i

31: else

32: for all children j, j′ of i (including j = j′) do

33: Ẽjj′ ← Ẽjj′ + W̃jiẼiiZ̃
∗
j′i

34: Σ̃jj′ ← Σ̃jj′ + Ẽjj′

35: end for

36: for all children j of i do Downward(j) end for

37: end if

38: end subroutine

4.5. Time cost. The time cost of Algorithm 2 is linear in n. To see this, note
that the number of elements for each category: Ã∗∗, Ũ∗, Ṽ∗, W̃∗, Z̃∗, Θ̃∗, Σ̃∗∗, and Ẽ∗∗,
is linear in the tree size. Furthermore, computing each element requires a constant
time. Therefore, we conclude that the overall time is linear.

5. Determinant calculation. The computation of det(A) is a simple applica-
tion of the Sylvester’s determinant theorem.

Proposition 5.1. For all nodes i,

det(Aii) = det(I + ΣiiΘ̃i) det(Bii).

In addition, if i is not a leaf,

det(Bii) = det(H)
∏

j∈Ch(i)

det(Bjj),

where the matrix H is defined in Proposition 4.2.
Proof. The first equation is a direct consequence of the Sylvester’s determinant

theorem det(C+DE) = det(C) det(I+EC−1D) on (4.3), whereas the second equation
is a result of the same theorem on (4.5).

Hence, det(A) comes almost for free with the calculation of A−1. We attach to
each tree node i a scalar value δi, defined as follows:

δi =


det(Bii) if i is a leaf node,

det(H) if i is neither a leaf nor the root,

det(H) det(I + ΣiiΘ̃i) if i is the root.

Then, det(A) is simply the product of the δi’s in all tree nodes i.

5.1. Formal algorithm. It is well known that the determinant of a matrix easily
overflows or underflows. Hence, a better approach representing the determinant is to
take logarithm. Let δ = det(A). We use two values to represent a complex δ:

log |δ| and arg(δ),

where | · | and arg(·) denote the magnitude and the argument of a complex number, re-
spectively. The argument allows 2π ambiguity. Then, we augment the data structure
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by adding the storage of log |δi| and arg(δi) to each node i and compute that

log |δ| =
∑
i

log |δi| and arg(δ) =
∑
i

arg(δi).

In Algorithm 4, we present the calculation of log |δ| and arg(δ) by using a post-
order tree traversal, which can be rewritten in any form of tree traversal, as along as
the traversal visits all the tree nodes.

Algorithm 4 Computing δ = det(A)

1: Patch Algorithm 2:
Line 6: Store log |δi| and arg(δi) before return, where δi = det(Aii−UiΣiiV ∗i )
Line 14: Store log |δi| and arg(δi), where δi = det(H)
Line 23: Update log |δi| and arg(δi), where δi ← δi · det(I + ΣiiΘ̃i)

2: Initialize log |δ| ← 0, arg(δ)← 0
3: Upward(root)

4: subroutine Upward(i)
5: if i is leaf then
6: log |δ| ← log |δ|+ log |δi|; arg(δ)← arg(δ) + arg(δi)
7: else
8: for all children j of i do
9: Upward(j)

10: log |δ| ← log |δ|+ log |δj |; arg(δ)← arg(δ) + arg(δj)
11: end for
12: end if
13: end subroutine

5.2. Time cost. Clearly, the time cost is linear in the tree size, that is, O(n).

6. Generation of compressed matrix. We have completed presenting the
proposed data structure and several operations it supports. In this section, we con-
sider how a recursively low-rank compressed matrix A is instantiated. Here, we discuss
two separate examples, each of which serves a purpose. To avoid excessive technical-
ities and repetitions with existing methods, we organize the technical details of the
examples in the appendix.

The first example constructs a random, complex, and non-Hermitian matrix. The
constructed matrix complies only with the recursively low-rank structure, but it does
not necessarily represent a compression of a kernel matrix. Such a matrix can be used
for empirically verifying the correctness of the developed algorithms and testing the
impact of matrix conditioning on the numerical behavior. This matrix also demon-
strates that the proposed data structure is tied to neither a real symmetric matrix
nor a positive definite matrix. Simply speaking, we first generate a random tree and
then the random elements in each tree node. For algorithmic details, see Appendix A.

The second example constructs a compressed form of a kernel matrix with a given
kernel function. This example shows how the proposed data structure is used in prac-
tice. The two parts of the construction are tree generation and matrix approximation.
Each part can be achieved with a considerable number of choices. We consider, for the
former part, using a binary k-d tree [6] to partition the data points, whereas for the
latter part, using Chebyshev approximation to derive the low-rank compression [11].



16 J. CHEN

We note that this construction is only one among many other possibilities proposed
in the literature.

Particularly useful to our case of the Chebyshev approximation is that the defi-
nition of the Σii matrices used for matrix inversion (cf. Section 4.2) shares the same
formula for that of the Σij ’s. Empirically, defining the Σii’s in this way significantly
improves the conditioning situation. See Appendix B on how the definitions of the
matrix components are derived.

7. Related methods. Matrices with a compressed structure similar to that
of this work have been studied under at least four different names: fast multipole
methods (FMM) [13], tree code methods [3], hierarchical matrices (H and H2 ma-
trices) [14], and hierarchically semiseparable matrices (HSS matrices) [9]. FMM was
originally developed for computing a matrix-vector product, and thus the product can
be used in an iterative solver for solving linear systems. The compressed structure was
later explored for developing a direct solver for linear systems [22]. A majority of the
FMM development does not use a language that is algebraically oriented; however,
equivalence is easily identified. The S2M, M2M, M2L, L2L, and L2T operators in
FMM corresponds to, in our case, the matrix components V∗, Z∗∗, Σ∗∗, W∗∗, and U∗,
respectively. A distinction is that our work does not have the notion of neighboring
boxes and interaction lists.

Early FMM methods exploit known series expansions for compressing a kernel
matrix; hence, only specialized kernel functions are applicable. Later developments
lean toward a kernel-independent nature. Ying et al. [28] replaced the analytic expan-
sions and translations with equivalent density representation, which were computed
by using Tikhonov regularizations for stability. Fong and Darve [11] proposed using
Chebyshev approximation to derive the compression. Other algebraically oriented
methods for compression include the use of SVD [12] and interpolative decomposi-
tions [10, 24, 23, 17]. Some recent work also explores the use of a black-box matrix-
vector multiplication to reversely construct the matrix; see [20, 23]. We note that the
work of this paper is orthogonal to how the matrix is compressed. We assume the ma-
trix preexists with a compressed form, and we are concerned mainly with numerically
stable algorithms for the matrix.

The concept of hierarchical matrices [14, 15, 7] (and also the ancestor—panel clus-
tering [16]) lays a comprehensive framework for matrix algebra, where more operations
other than matrix-vector multiplications and linear system solutions are considered.
The basic H matrix does not impose the same-subspace requirement on the low-rank
approximations (that is, no W∗∗ and Z∗∗); hence, it is not surprising that both the
storage and the floating point operations for various matrix algorithms have an ad-
ditional logτ n factor for some small integer τ . The tree structure of hierarchical
matrices in principle can be more complicated than ours; for example, an off-diagonal
block may be further subdivided because of admissibility requirements. It is unclear
in such a case, however, how the various matrix operations are performed. On the
other hand, the H2 matrices (a restricted subset of hierarchical matrices) are equiva-
lent to the matrix structure of this work. However, it has not been demonstrated how
the various matrix operations supported by H matrices are extended to H2 matrices,
except for matrix-vector multiplications [7].

The tree code method [3] was developed mainly for a fast kernel summation
(equivalently a matrix-vector product), at approximately the same time FMM became
known. The method is based on analytic series expansions of specialized kernels and
entails an O(n log n) complexity. When the analytic expansion is amended for cluster-
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cluster interactions [18], in the matrix form, it is equivalent to an H matrix.

We consider our work closest related to HSS matrices [9]. The only difference
from the data structure point of view is that we incorporate a more general tree than
the binary HSS tree. From the algorithmic point of view, however, the development
of HSS matrices leans toward using factorizations [8, 26] for solving linear systems or
for composing preconditioners [27], whereas we directly invert the matrix. Moreover,
we describe the algorithms by using a graph theoretic language, which simplifies the
index notations used for HSS matrices in general.

8. Numerical experiments. In this section we demonstrate a comprehensive
set of experiments, focusing on numerical stability and computational costs. The
program is written in C++, where the basic matrix operations are called from BLAS
and LAPACK. We still use Φ to denote a kernel matrix and A a recursively low-
rank compressed matrix. We add a tilde to denote matrix inverse (e.g., Φ̃ and Ã). We
sometimes need a fine distinction between the matrix stored in the tree data structure
and one converted to an explicit dense matrix form. Then, we add a subscript t for
the former case and a subscript m for the latter case (e.g., At and Am). We also
distinguish the matrix inverses computed by different algorithms with subscripts:
“Alg2” means an inverse computed by using Algorithm 2, “Kry” means an inverse
computed by using a Krylov solver with the preconditioner Ã on every column of the
identity matrix, and “LU” means an inverse computed based on LU factorization with
partial pivoting. We use x to denote the vector solution of a linear system, with the
aforementioned subscripts to distinguish results from different methods. The machine
precision eps = 2.2e-16.

8.1. Random complex matrix. Table 8.1 shows the results of a randomly
generated compressed matrix (cf. Appendix A). The matrix has a size approximately
equal to 2, 000 with r = 10. The matrix is complex and non-Hermitian. It is ill
conditioned, with a 2-norm condition number 3.8e+08. The relative error 1.9e-15 ≈
eps on the top left corner of the table indicates that the tree form and the matrix form
of A can be used interchangeably (here, b is a random vector). Then, by performing
an LU factorization of A, we see that the inverse ÃLU reaches an accuracy 4.0e-08.
On the other hand, we perform the inversion by using the proposed algorithm to
obtain ÃAlg2. This inverse attains an accuracy 2.7e-06, which is moderately close

to that of ÃLU. The preconditioned matrix AÃAlg2, however, already has an almost

perfect condition number. Applying GMRES with the preconditioner ÃAlg2, we see
that it converges in two iterations for each column of the identity matrix, and the
computed inverse ÃKry has an accuracy 5.2e-07 that is further close to that of ÃLU.

We compare the determinants computed according to the tree form At and that
according to the matrix form Am. The relative difference 2.5e-14 indicates that
the log magnitudes of the two determinants are sufficiently close, and the differences
1.1e-10 and 1.0e+00 collectively show that the argument of the two determinants
are close, too. If the two matrices are real, the cosine term is particularly useful for
verifying whether the determinant has flipped sign.

We also compare the diagonals of the inverse of A, one computed from Algorithm 2
and the other from an LU factorization. We see that the 2-norm error and the trace
error are both on the order of 1e-11; thus they agree reasonably well.

8.2. Indefinite kernel. After the experiment with a random matrix, we start
to work on kernel matrices. They are compressed by using the technique discussed in
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Table 8.1
Computation results for a random matrix. n = 2, 076. Parameters: budgeted number of leaves

= 50, probability p = 0.5, range of number of children [3, 5], range of leaf size [30, 50], rank r = 10.

‖Atb−Amb‖2
‖Amb‖2

1.9e-15
abs[log |det(At)| − log |det(Am)|]

abs[log |det(Am)|]
2.5e-14

cond2(A) 3.8e+08 tan[arg(det(At))− arg(det(Am))] 1.1e-10

cond2(AÃAlg2) 1.0e+00 cos[arg(det(At))− arg(det(Am))] 1.0e+00

‖AÃLU − I‖2 4.0e-08 ‖ diag(ÃAlg2)− diag(ÃLU)‖2
‖diag(ÃLU)‖2

6.4e-11
‖AÃAlg2 − I‖2 2.7e-06

‖AÃKry − I‖2 5.2e-07 | tr(ÃAlg2)− tr(ÃLU)|
| tr(ÃLU)|

6.6e-11
Krylov solver GMRES

iter. per r.h.s. 2

Appendix B. Table 8.2 shows the results for a one-dimensional multiquadric kernel

φ(x,y) = (‖x− y‖22 + c2)1/2. (8.1)

A multiquadric kernel yields a symmetric matrix that is only conditionally positive
definite. We use n = 103 points uniformly distributed on [0, 1] to generate the matrix
Φ. By using a Chebyshev order k = 15, the compressed matrix A yields a relative
accuracy 4.9e-09. From the table we see that Φ and A have approximately the same
condition number (which is not always the case, as we will see in a later example)
and that again AÃAlg2 is almost perfectly conditioned. The accuracy of the inverse
of A computed by using the proposed algorithm is close to that by using the LU
factorization, and a Krylov method further improves the accuracy. Note that even
though A is not positive definite, the preconditioned conjugate gradient method still
converges (and in one iteration only). Moreover, note that even though A is close
to Φ and the inverse ÃKry of A is numerically accurate, ÃKry is not necessarily an

accurate inverse of Φ, as the 2-norm of ΦÃKry − I indicates. The determinant and
diagonal results in the table suggest that the accuracies are only moderate if one
compares A with the original matrix Φ, in contrast to the good accuracy in the
previous experiment, where the tree form of A is compared with the matrix form.

8.3. Positive definite kernel. Table 8.3 shows the results for a two-dimensional
Matérn kernel (with nugget)

φ(x,y) = Mν(x̂− ŷ) + δ(x̂, ŷ). (8.2)

Here, the pure Matérn kernel Mν of order ν, the point x̂ under coordinate scaling,
and the nugget δ are defined as, respectively,

Mν(r) =
‖r‖ν2Kν(‖r‖2)

2ν−1Γ(ν)
, x̂ =

[
x1

`1
, . . . ,

xd
`d

]
, δ(x,y) =

{
δ, x = y

0, x 6= y,

where Kν is the modified Bessel function of second kind of order ν. The pure Matérn
kernel is positive definite; however, the matrix generated from the pure kernel often
has tiny eigenvalues when n is large. Hence, a small nugget δ is often used to preserve
the positive definiteness of the kernel matrix. The coordinate scaling makes it possible
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Table 8.2
Computation results for a kernel matrix. 1D Multiquadric kernel (8.1). Points uniform on

[0, 1]. Parameters: c = 10−5, n = 1, 000, n0 = 60, k = 15.

‖A− Φ‖2
‖Φ‖2

4.9e-09
abs[log |det(A)| − log |det(Φ)|]

abs[log |det(Φ)|]
3.6e-05

cond2(Φ) 8.3e+08 tan[arg(det(A))− arg(det(Φ))] -7.3e-12

cond2(A) 8.3e+08 cos[arg(det(A))− arg(det(Φ))] 1.0e+00

cond2(AÃAlg2) 1.0e+00 ‖diag(ÃAlg2)− diag(Φ̃LU)‖2
‖ diag(Φ̃LU)‖2

2.6e-03
‖AÃLU − I‖2 5.7e-09

‖AÃAlg2 − I‖2 3.3e-08 | tr(ÃAlg2)− tr(Φ̃LU)|
| tr(Φ̃LU)|

9.1e-04
‖AÃKry − I‖2 1.5e-08

Krylov solver PCG

iter. per r.h.s. 1

‖ΦÃKry − I‖2 1.3e-01

to yield an anisotropic kernel, as is the case for our experiment here. We generate
a matrix of size n = 4 × 103 and use Chebyshev order k = 15. Note that in two
dimensions, this order means that the “rank” r = (k+1)2 = 256, which is larger than
the leaf size n0 = 200.

Table 8.3
Computation results for a kernel matrix. 2D Matérn kernel (8.2). Points uniform on [0, 1]2.

Parameters: ν = 1, ` = [1; 2], δ = 10−4, n = 4, 000, n0 = 200, k = 15.

‖A− Φ‖F
‖Φ‖F

2.7e-05
abs[log |det(A)| − log |det(Φ)|]

abs[log |det(Φ)|]
6.8e-04

cond2(Φ) 3.2e+07 tan[arg(det(A))− arg(det(Φ))] -4.5e-11

cond2(A) 2.8e+08 cos[arg(det(A))− arg(det(Φ))] 1.0e+00

cond2(AÃAlg2) 1.0e+00 ‖diag(ÃAlg2)− diag(Φ̃LU)‖2
‖ diag(Φ̃LU)‖2

1.4e-01
‖AÃLU − I‖F /

√
n 1.2e-10

‖AÃAlg2 − I‖F /
√
n 4.8e-04 | tr(ÃAlg2)− tr(Φ̃LU)|

| tr(Φ̃LU)|
8.3e-03

‖AÃKry − I‖F /
√
n 1.6e-10

Krylov solver PCG

iter. per r.h.s. 2

‖ΦÃKry − I‖F /
√
n 7.0e-01

We use uniformly random points on [0, 1]2 to generate the kernel matrix Φ. The
approximation A to Φ has a relative error 2.7e-05. We see that the condition number
of A and Φ are no longer similar. However, AÃAlg2 is still almost perfectly conditioned.

For measuring the accuracy of the inverses, we change the 2-norm to the Frobenius
norm divided by

√
n. The latter measure not only is more economic to compute but

also has a stochastic interpretation, because for any matrix M ,

E
x∼N

‖Mx‖2
‖x‖2

=
‖M‖F√

n
, (8.3)
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where Ex∼N means taking expectation for all vector x drawn from the standard
multivariate normal distribution. See Appendix C for a proof. Then,

‖AÃ− I‖F√
n

= E
b∼N

‖A(Ãb)− b‖2
‖b‖2

, (8.4)

for any numerical inverse Ã. The equality (8.4) means that if we solve a linear system
with respect to A and a random vector b from standard normal, then the relative
residual is the left-hand side of (8.4) on average. Hence, for large matrices we cannot
afford computing Ã, but testing with a random vector b is justified.

Reading Table 8.3, we see that the inverse computed by using the proposed algo-
rithm has an accuracy far inferior than that computed by using the LU factorization.
However, two iterations of preconditioned conjugate gradient substantially boosts the
accuracy, which matches that of the LU factorization.

8.4. Unsymmetric kernel. The fourth experiment is run with a nonstationary
(that is, non-translational-invariant) kernel

φ(x,y) = exp(−τ‖x̂‖2) · exp(−‖ŷ‖2) ·Mν(x̂− ŷ) + δ(x̂, ŷ), (8.5)

where the pure Matérn term Mν and the nugget term δ have been defined in the
previous experiment. We set τ = 2, such that the matrix is unsymmetric. The points
for this experiment are uniformly random on the unit sphere. See Table 8.4 for results.

Since n = 104 is not small, we do not invert A, but we test the inversion accuracy
by only solving linear systems with a random right-hand side b. One sees that the
solutions xLU and xKry attain almost the same accuracy, with xKry slightly better.
Note that even though A is unsymmetric, preconditioned conjugate gradient still
converges (and in two iterations only). Comparing the residuals in Table 8.4 with
those in Table 8.3, we suggest that the modified kernel (8.5) yields a matrix much
better conditioned than that resulting from the Matérn kernel (8.2), when the same
nugget δ is applied.

Table 8.4
Computation results for a kernel matrix. 2D nonstationary kernel (8.5). Points uniform on

the unit sphere. Parameters: τ = 2, ν = 1, ` = [1; 2], δ = 10−4, n = 10, 000, n0 = 200, k = 15.

‖A− Φ‖F
‖Φ‖F

2.9e-04
abs[log |det(A)| − log |det(Φ)|]

abs[log |det(Φ)|]
5.0e-05

‖AxLU − b‖2/‖b‖2 5.1e-15 tan[arg(det(A))− arg(det(Φ))] -5.8e-12

‖A(ÃAlg2b)− b‖2/‖b‖2 1.7e-12 cos[arg(det(A))− arg(det(Φ))] 1.0e+00

‖AxKry − b‖2/‖b‖2 4.5e-15

Krylov solver PCG

iter. per r.h.s. 2

‖ΦxKry − b‖2/‖b‖2 6.8e-04

8.5. Scaling. We use the kernel (8.5) to perform a scaling test with varying n.
The configuration of the kernel is similar to that in Table 8.4, but the leaf size is
changed to n0 = 128, the Chebyshev order is changed to k = 7, and the points are
uniform on [0, 1]2. The computations are serial and are performed on one compute
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node (64 GB local memory) of a computing cluster. The processor is Intel Sandy
Bridge with a clock rate of 2.6 GHz. The timings are plotted in Figure 8.1. With
dashed lines indicating a linear increase, we see that the time costs of all the algorithms
proposed in this paper closely follow the linear scaling. Some markers in the plot
appear to be “missing” because the recorded times are zero. Furthermore, inverting a
matrix is substantially more expensive than performing matrix-vector multiplications,
whereas the determinant and trace calculations have a negligible cost once the matrix
is inverted.

104 105 106
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100
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Ti
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e 
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inv(A)
A*b
tr(inv(A))
det(A)

Fig. 8.1. Running time versus matrix dimension n. 2D nonstationary kernel (8.5). Points
uniform on [0, 1]2. Parameters: τ = 2, ν = 1, ` = [1; 2], δ = 10−4, n0 = 128, k = 7. Dashed lines
indicate linear scaling.

9. Concluding remarks. We have defined a class of matrices that entail a
multilevel structure, where the off-diagonal blocks on all levels are low rank and the
corresponding blocks across levels share the same row and column subspace. Such
a matrix requires only a linear storage, as opposed to the requirement for a general
dense matrix, which is quadratic in n. We also show that the inverse of such a
matrix belongs to the same class. Hence, matrix-vector multiplications and matrix
inversions can both be carried out in strictly linear time. We design the underlying
data structure that supports these two matrix operations and also the determinant
calculation. The proposed algorithms execute a level-by-level working flow, which
implies both intranode and internode parallelism that applies to massively parallel
and heterogeneous computer architectures.

The matrix inversion algorithm is not based on factorizations, but it is demon-
strated to have a good numerical stability in practice. The key of its favorable nu-
merical property is that we decompose a diagonal block of the matrix as a new block
plus a low-rank correction; see (4.3). When the low-rank correction is defined ap-
propriately, the new block can be much better conditioned than the original block;
hence the propagation of numerical errors caused by inversions is better controlled.
The Chebyshev compression scheme proposed in [11] naturally defines the low-rank
correction. Without the use of such a decomposition, the errors in the tables of Sec-
tion 8 are unacceptably large, except for well-conditioned instances. From the tables,
we see that the proposed algorithm yields reasonable accuracies for Ã, the numerical
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inverse of A. One can directly multiply Ã with the right-hand side as a solution of
the linear system with respect to A. If higher accuracy is required, a Krylov iteration
with Ã being the preconditioner can converge in one or two iterations and can reach
an accuracy matching that of a dense direct solver.

The matrix inversion algorithm consequently enables computing the determinant
of A and the diagonal of the inverse of A with negligible cost. Hence, the contribution
of this paper spans beyond matrix-vector multiplications and solving linear systems
with kernel matrices. The determinant and diagonal frequently appear in statistical
applications, such as data analysis and uncertainty quantification [1, 25, 2, 4].

We have demonstrated various computational scenarios, including uniform versus
nonuniform point sets, kernel versus non-kernel matrices, isotropic versus anisotropic
versus nonstationary kernels, real versus complex matrices, Hermitian versus non-
Hermitian matrices, and positive-definite versus indefinite matrices. Most of the ex-
perimented matrices are reasonably ill conditioned (condition number O(108)). The
comprehensive experiments show that the proposed data structure and algorithms
serve in a general purpose.

The compression quality is a key for the successful calculation with kernel matri-
ces. In this paper we adapt the compression scheme proposed in [11] combined with
the use of a k-d tree. A benefit of such a compression is that the cost is strictly linear,
whereas most of other methods cannot achieve this complexity in general. In this
compression, however, the “rank” r grows exponentially with the Chebyshev order
k, which makes the application in high dimensions still challenging. Nevertheless,
compression is a subject orthogonal to the matrix operations, and it can be indepen-
dently developed. An avenue of future work is to design better compression schemes.
This topic has attracted considerable research, but methods and theory for dimen-
sions higher than three are rare. We remark that in the context of machine learning,
kernels are typically defined on a very high-dimensional ambient space but the data
points are assumed to be embedded on a low-dimensional manifold. How to apply
this work for kernel machine learning is an interesting subject.

The ultimate use of the proposed data structure and algorithms is in the large-
scale setting, for which parallelization is an essential component. We will consider the
parallel implementation in a separate paper. Because all the algorithms are designed
with a working flow similar to that of FMM, which has been demonstrated to scale to
O(105) processor cores [19], we foresee a similar parallel scalability of our work here.

Acknowledgments. We gratefully acknowledge the use of the Blues cluster in
the Laboratory Computing Resource Center at Argonne National Laboratory. This
work was supported by the U.S. Department of Energy under Contract DE-AC02-
06CH11357.

Appendix A. Generation of a random and recursively low-rank struc-
tured matrix. The generation of a recursively low-rank compressed matrix in a
random nature follows these steps:

1. Specify parameters: a budgeted number m of tree leaves, a probability p for
a node being a leaf, a range [s1, s2] of the number of children a node has (with s1 > 1),
a range [n1, n2] of leaf size, and the rank r.

2. Generate a random tree by creating nodes (and links) in a fashion similar to
performing a breadth-first search of a graph. Specifically, maintain a queue of nodes
and initialize it with the tree root. We iteratively pop a node out of the queue; with
probability p ignore this node or with probability 1−p generate children for it, where
the number of children is an integer uniformly random in [s1, s2]. The first node (the
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root) must have children. The generated children are pushed into the queue. The
current set of leaf nodes include the ones popped off the queue with no children and
the ones staying in the queue. This procedure is continued as long as the current
number of leaf nodes is less than m. If the queue is empty but the number has not
reached m, the last node popped off the queue must have children so that more leaf
nodes can be generated.

3. After the tree is generated, for all leaf nodes k, generate an integer nk uni-
formly random in [n1, n2]. Generate random matrices Akk ∈ Cnk×nk and Uk, Vk ∈
Cnk×r. For all nonleaf nodes i, generate random Σjj′ ∈ Cr×r for all pairs of children
j, j′ of i. For all non-root nodes k, generate random Wki, Zki ∈ Cr×r where i is the
parent of k. Each random element (particularly the Akk’s) can be constructed with
a prescribed condition number.

Appendix B. Compressing a kernel matrix. Denoting by Φ a kernel matrix,
the goal is to construct a recursively low-rank compressed A that approximates Φ. Let
there be a set of d-dimensional points {xp}l=1,...,n and a kernel function φ : Rd×Rd →
R so that

(p, q) entry of Φ = φ(xp,xq).

Hence, the partitioning tree in effect recursively partitions the set of points. We use
the k-d tree [6] to perform the partitioning, in which case attached to every tree node
is a d-dimensional bounding box that tightly bounds the points contained in this node.
A k-d tree is a binary tree.

For all leaf nodes l of the partitioning tree, the matrix block A(Il, Il) is equal
to Φ(Il, Il). On the other hand, for every pair of sibling nodes l,m, we construct a
rank-r matrix block A(Il, Im) that approximates Φ(Il, Im). Such an approximation
uses an extension of the Chebyshev interpolating polynomial that approximates the
kernel φ(x,y) for any x ∈ Bl and y ∈ Bm, where Bl and Bm are the bounding boxes
associated with nodes l and m, respectively.

To build the approximation, we first note that in the R1 case, the degree-k Cheby-
shev interpolating polynomial φk that interpolates a function φ on an interval [a, b] is
defined as

φk(x) =

k∑
i=0

φ(ξ(x̄i)) Rk(x̄i, ξ
−1(x)), x ∈ [a, b],

where x̄i = cos((2i + 1)π/(2k + 2)), i = 0, . . . , k, are the k + 1 Chebyshev points on
the interval [−1, 1], ξ is the affine mapping that maps [−1, 1] to [a, b], and Rk is the
Lagrange polynomial

Rk(x̄i, x) =
2

k + 1

1

2
+

k∑
j=1

Tj(x̄i)Tj(x)

 ,
with Tj being the Chebyshev polynomial of the first kind of order j. The Chebyshev
interpolating polynomial φk interpolates φ at the mapped Chebyshev points ξ(x̄i) and
it converges to φ as k increases.
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We extend φk to accept two arguments as φ does:

φk(x, y) =

k∑
i=0

k∑
j=0

φ(ξ1(x̄i), ξ2(x̄j)) Rk(x̄i, ξ
−1
1 (x)) Rk(x̄j , ξ

−1
2 (y)),

x ∈ [a, b], y ∈ [e, f ],

in which case ξ1 and ξ2 are the affine mappings that map [−1, 1] to [a, b] and [e, f ],
respectively. We can further extend φk to accept two Rd arguments, if φ does so, too.
In this case, we must use d-dimensional vectors, such as i = [i1, . . . , id], to denote
indices; an interval such as [a, b] means [a1, b1]× · · · × [ad, bd]. We write

φk(x,y) =

k∑
i=0

k∑
j=0

φ(ξ1(x̄i), ξ2(x̄j)) Rk(x̄i, ξ
−1
1 (x)) Rk(x̄j , ξ

−1
2 (y)),

x ∈ [a, b], y ∈ [e,f ], (B.1)

where ξ1 and ξ2 denote the affine mappings that map [−1, 1]d to [a, b] and [e,f ],
respectively, the d-dimensional Chebyshev points x̄i are Cartesian products of the
1-dimensional Chebyshev points x̄i, and the Lagrange polynomial Rk for Rd is the
product of the usual Lagrange polynomials for R1:

Rk(z,w) = Rk1(z1, w1) · · ·Rkd(zd, wd).

We have that φk is a degree 2(k1 + · · ·+ kd)-polynomial that approximates φ.

The equation (B.1) is used to build the rank-r approximation of a block of the
kernel matrix, with r = (k1 + 1)(k2 + 1) · · · (kd + 1). Specifically, let two sibling leaf
nodes l,m of the partitioning tree be associated with bounding boxes [a, b] and [e,f ].
Then, for any xp ∈ [a, b] and xq ∈ [e,f ], φ(xp,xq) is approximated by φk(xp,xq) as
defined in (B.1). This approximation defines the elements of the compressed matrix:

1. the (i, j) entry of Σlm is φ(ξ1(x̄i), ξ2(x̄j)),
2. the (p, i) entry of Ul is Rk(x̄i, ξ

−1
1 (xp)),

3. the (q, j) entry of Vm is Rk(x̄j , ξ
−1
2 (xq)).

Furthermore, we can approximate φ(ξ1(x̄i), ξ2(x̄j)) in (B.1) by φk by using (B.1)
recursively, which leads to the definitions of other Σ∗∗’s and also of the change-of-
basis matrices. Specifically, item 1 of the above list (definition of Σlm) still holds for
any pair of sibling nodes l,m. For any pair of child node l and parent node u, if ξ1
and ξ3 are the mappings that maps [−1, 1]d to the bounding boxes associated with l
and u, respectively, then

4. the (i,m) entry of Wlu is Rk(x̄m, ξ
−1
3 (ξ1(x̄i))),

5. Zlu is the same as Wlu.

We thus have defined the recursively low-rank compressed matrix A. In addition, we
note that the definition of Σlm in item 1 extends to Σll for all nodes l.

Appendix C. Proof of (8.3). If x follows the standard multivariate normal,
then x/‖x‖2 is uniform on the unit sphere. Denote by S the latter distribution. Then,
we have

E
x∼N

‖Mx‖2
‖x‖2

= E
x∼S
‖Mx‖2 = E

x∼S
tr(Mxx∗M∗)1/2 = tr

{
M
(

E
x∼S

xx∗
)
M∗
}1/2

.
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Because Ex∼S xx∗ = I/n, we immediately have that

tr
{
M
(

E
x∼S

xx∗
)
M∗
}1/2

=
‖M‖F√

n
.

Thus, the proof is completed.
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